B3 - Probability III: Mid-Semester Exam

Yogeshwaran D.

09th September 2025. Time Limit: 2.5 hours. Max. points: 30.

There are two parts to the question paper - PART A and PART B. Read the instructions for each section carefully.

1 PART A: MULTIPLE-CHOICE QUESTIONS - 10 Points.

Please write only the correct choice(s) (for ex., (a), (b) et al.) in your answer scripts. No explanations are needed. Write PART A answers in a separate page.

Some questions will have multiple correct choices. Answer all questions. Each question carries 2 points. 1 point will be awarded if only some correct choices are chosen and no wrong choices are chosen.

- 1. Let $\Omega = \{1, 2, 3, 4\}$ and consider $\mathcal{F} := \sigma(\{1, 2\}, \{2, 3\}, \{3, 4\})$.
 - (a) F has at most 14 elements.
 - (b) F contains at least 12 elements.
 - (c) \mathcal{F} is the power-set.
 - (d) $\{4\} \notin \mathcal{F}$.
- 2. Which of the following are Borel-measurable functions from \mathbb{R} to \mathbb{R} ?
 - (a) $\mathbf{1}_{\mathbb{Q}}$ where \mathbb{Q} is the set of rationals.
 - (b) $\mathbf{1}_A$ where A^c is countable.
 - (c) $\mathbf{1}_A$ for $A \subset \mathbb{R}$.
 - (d) $\mathbf{1}_A \mathbf{1}_{\mathbb{Q}}$ where \mathbb{Q} is the set of rationals and $A \subset \mathbb{R}$.
- 3. Let \mathbb{P} be a probability measure on $(\mathbb{R}, \mathcal{B})$. Which of the following must be true?
 - (a) $\mathbb{P}(\{n, n+1, ..., \}) = 1 \text{ for all } n \in \mathbb{N}.$
 - (b) $\mathbb{P}(\{q\}) = 0$ for all $q \in \mathbb{Q}$.
 - (c) $\mathbb{P}(\{-n, -n-1, \dots, \}) = 1$ for all $n \in \mathbb{N}$.
 - (d) For all $\epsilon > 0$, there exists a compact subset $K \subset \mathbb{R}$ such that $\mathbb{P}(K) \geq 1 \epsilon$.
- 4. For which of the following conditions, is there a probability measure \mathbb{P} on $([0,1],2^{[0,1]})$ satisfying the condition.

2 PART B : 20 Points. 2

- (a) $\mathbb{P}[0, 1/2] = \mathbb{P}[1/2, 1] = 2/3$.
- (b) $\mathbb{P}[0, 1/2) = \mathbb{P}(1/2, 1] = 2/3$.
- (c) $\mathbb{P}[0, 1/2) = \mathbb{P}(1/2, 1] = 0$.
- (d) $\mathbb{P}[0, 1/2] = \mathbb{P}[1/2, 1] = 1/3$.
- 5. Which of the following functions can be a CDF?
 - (a) $F(x) = \min\{x_+, 1\}, x \in \mathbb{R}$.
 - (b) $F(x) = \min\{\sqrt{x_+}, 1\}, x \in \mathbb{R}.$
 - (c) $F(x) = \frac{1}{2} + \frac{1}{\pi}\arctan(x), x \in \mathbb{R}$
 - (d) $F(x) = e^{-e^{-x}}, x \in \mathbb{R}$.

2 PART B: 20 Points.

Answer any two questions only. All questions carry 10 points.

Give necessary justifications and explanations for all your arguments. If you are citing results from the class, mention it clearly.

- 1. Let X be a Poisson random variable with parameter λ . Find k so that $\mathbb{P}(X = k)$ is maximal and also show that $\mathbb{E}(Xf(X)) = \lambda \mathbb{E}(f(X+1))$ for any bounded function $f : \mathbb{N} \cup \{0\} \to \mathbb{R}$.
- 2. Let X be a random variable with pdf f(x) = cx(1-x) if $0 \le x \le 1$ and f(x) = 0 otherwise. Find a measurable function $G: [0,1] \to [0,1]$ such that G(U) has the same CDF as the random variable X(1-X).
- 3. Let $b \in (0, \infty)$ and X be a random variable with pdf $f(x) = \frac{1}{2b} e^{-\frac{|x|}{b}}, x \in \mathbb{R}$.
 - (a) Compute the moment generating function and all the moments of X. (6)
 - (b) Find the pdf and CDF of the random variable |X|. (4)

Notations

- 1. \mathbb{N} set of Natural numbers; \mathbb{Q} set of Rationals ; \mathbb{B} Borel σ -algebra.
- 2. pmf probability mass function; pdf probability density function; CDF Cumulative distribution function.
- 3. U is a Uniform[0,1] random variable; X is a Poisson random variable with parameter λ if the pmf is $\lambda^k e^{-\lambda}/k!, k=0,1,2...$
- 4. For a random variable X, the kth moment is $\mathbb{E}(X^k)$ and the moment generating function is $\mathbb{E}(e^{tX})$, $t \in \mathbb{R}$.